12 research outputs found

    Assisting V2V failure recovery using Device-to-Device Communications

    Full text link
    This paper aims to propose a new solution for failure recovery (dead-ends) in Vehicle to Vehicle (V2V) communications through LTE-assisted Device-to-Device communications (D2D). Based on the enhanced networking capabilities offered by Intelligent Transportation Systems (ITS) architecture, our solution can efficiently assist V2V communications in failure recovery situations. We also derive an analytical model to evaluate generic V2V routing recovery failures. Moreover, the proposed hybrid model is simulated and compared to the generic model under different constrains of worst and best cases of D2D discovery and communication. According to our comparison and simulation results, the hybrid model decreases the delay for alarm message propagation to the destination (typically the Traffic Control Center TCC) through the Road Side Unit (RSU)Comment: 3 page

    A Hybrid Model to Extend Vehicular Intercommunication V2V through D2D Architecture

    Full text link
    In the recent years, many solutions for Vehicle to Vehicle (V2V) communication were proposed to overcome failure problems (also known as dead ends). This paper proposes a novel framework for V2V failure recovery using Device-to-Device (D2D) communications. Based on the unified Intelligent Transportation Systems (ITS) architecture, LTE-based D2D mechanisms can improve V2V dead ends failure recovery delays. This new paradigm of hybrid V2V-D2D communications overcomes the limitations of traditional V2V routing techniques. According to NS2 simulation results, the proposed hybrid model decreases the end to end delay (E2E) of messages delivery. A complete comparison of different D2D use cases (best & worst scenarios) is presented to show the enhancements brought by our solution compared to traditional V2V techniques.Comment: 6 page

    Experimental evaluation of an open source implementation of IPv6 GeoNetworking in VANETs

    Get PDF
    Conference is technically co-sponsored by IEEE Communications Society and co-organized by the Technical Sub-Committee on Vehicular Networks and Telematics (VNAT)International audienceISO TC204 and ETSI TC ITS are developing a set of standards for Cooperative ITS (Cooperative Intelligent transportation Systems) which will allow ITS stations i.e. vehicles, the road infrastructure and other peers reachable through the Internet to cooperate and exchange information with one another in order to enhance road safety, traffic efficiency and comfort for all road users. In situations where the exchange of information has to transit through the Internet, the use of IP, more specifically IPv6, is crucial and meets ITS needs for reliable and scalable communication capabilities in vehicular networks. An implementation of Cooperative ITS communication protocols is necessary to validate extensively the ETSI and ISO Coop- erative ITS standards. In this paper, we describe CarGeo6, an ongoing open-source implementation of the IPv6 GeoNetworking capabilities of the ITS station reference architecture based on the output of the GeoNet European Project. CarGeo6 combines IPv6 and GeoNetworking capabilities into a common protocol stack for the transmission of IPv6 packets into a given geographical area. This paper reports the validation process and the network performance evaluation of CarGeo6 as well as a comparison of these results with GeoNet results

    Experimentation Towards IPv6 over IEEE 802.11p with ITS Station Architecture

    Get PDF
    International audienceThe goal of Cooperative Intelligent Transportation Systems (ITS) is to enhance road safety, traffic efficiency, and comfort of road users based on Vehicle-to-Vehicle, Vehicle-to- Roadside, and Vehicle-to-Central communications over diverse media such as DSRC, Wi-Fi, 3G, WiMAX, and LTE. IPv6 is the most promising technology that enables a convergence of such different communications over diverse media. This paper is about investigating the issues regarding IP-communications over DSRC band. The investigation is made through field test experiments using communication devices equipped with hardware interfaces for different media as well as an IPv6 stack. Based on our field test results, we discuss the issues and some potential solutions towards achieving sufficient perfomance of IPv6 communications over DSRC band

    Large Scale Model for Information Dissemination with Device to Device Communication using Call Details Records

    Get PDF
    In a network of devices in close proximity such as Device to Device (D2DD2D) communication, we study the dissemination of public safety information at country scale level. In order to provide a realistic model for the information dissemination, we extract a spatial distribution of the population of Ivory Coast from census data and determine migration pattern from the Call Detail Records (CDRCDR) obtained during the Data for Development (D4DD4D) challenge. We later apply epidemic model towards the information dissemination process based on the spatial properties of the user mobility extracted from the provided CDRCDR. We then propose enhancements by adding latent states to the epidemic model in order to model more realistic user dynamics. Finally, we study dynamics of the evolution of the information spreading through the population.Comment: Accepted in Computer Communications journa

    Experimentation Towards IPv6 over IEEE 802.11p with ITS Station Architecture

    Get PDF
    International audienceThe goal of Cooperative Intelligent Transportation Systems (ITS) is to enhance road safety, traffic efficiency, and comfort of road users based on Vehicle-to-Vehicle, Vehicle-to- Roadside, and Vehicle-to-Central communications over diverse media such as DSRC, Wi-Fi, 3G, WiMAX, and LTE. IPv6 is the most promising technology that enables a convergence of such different communications over diverse media. This paper is about investigating the issues regarding IP-communications over DSRC band. The investigation is made through field test experiments using communication devices equipped with hardware interfaces for different media as well as an IPv6 stack. Based on our field test results, we discuss the issues and some potential solutions towards achieving sufficient perfomance of IPv6 communications over DSRC band

    CVS : un framework d'architecture pour le déploiement de services véhiculaires basés sur les communications LTE-D2D dans les réseaux 4G/5G

    No full text
    The traffic explosion in today’s mobile networks is one of the major concerns of mobile operators. This explosion is mostly widening the gap between networks’ capacities and users’ growing needs in terms of bandwidth and QoS (Quality of Service), which directly impacts operators’ business profitability. In this context, Device-to-Device (D2D) communications offer mobile operators business and technical opportunities by allowing the network traffic offload with D2D direct communications between mobile devices. The recent standardization of D2D-based services as Proximity Services (ProSe) by the 3GPP provides already a set of enhancements to the current LTE/4G architecture to support these services. However, still in its infancy, the proposed solutions are envisioned for short-term market deployments and for a limited set of service categories (i.e public safety services). As a first contribution of this thesis, the proposed Distributed ProSe Architecture enhances the current ProSe architecture for a longer term deployment perspective of D2D-based services. On the basis of this enhanced architecture, vehicular communications and related services are further investigated as a specific implementation of ProSe as well as a new market opportunity for mobile operators. The CVS (Cellular Vehicular Services) solution is then introduced as an architecture framework that enables the integration of vehicular networks into mobile operators’ network infrastructure. A mobile network clustering algorithm and D2D relay-based communication mechanisms are used in the solution design in order to optimize the use of both core and radio network resources. Performance evaluation through analytical modeling and simulations are also carried out to validate the proposed contributionsL'explosion du trafic dans les réseaux mobiles d'aujourd'hui est l'une des préoccupations majeures des opérateurs mobiles. En effet, entre investir dans le développement de l’infrastructure pour supporter l’évolution des besoins des utilisateurs et faire face à la concurrence accrue des nouveaux acteurs du marché, l’enjeu est considérable. Dans ce contexte, les communications Device-to-Device (D2D) offrent aux opérateurs mobiles de nouvelles opportunités aussi bien financières que techniques, à travers les communications directes entre les appareils mobiles permettant de délester le réseau d'une partie du trafic. L'organisme de standardisation 3GPP a défini des évolutions de son architecture LTE/4G fonctionnelle pour supporter les communications D2D dans le cadre de Services de Proximité (ProSe). Cependant, les modèles économiques autour de ces nouveaux services sont encore flous et les solutions actuellement proposées par le 3GPP visent un déploiement à court terme d’un ensemble limité de services (ex : les services de sécurité publique). La première contribution proposée dans le cadre de cette thèse est une évolution de l'architecture ProSe vers une architecture cible distribuée dans laquelle les fonctions liées à ProSe sont mutualisées avec d'autres fonctions réseaux. La deuxième contribution porte sur l’intégration des services véhiculaires dans les réseaux mobiles en tant que services ProSe particuliers reposant sur les communications D2D. L'architecture CVS (Cellular Vehicular Services) est alors proposée comme solution pour un déploiement à grande échelle des services véhiculaires en s'appuyant sur une nouvelle évolution de l’architecture ProSe distribuée. Un algorithme de « clustering » ainsi que des procédures de communication en mode relais D2D sont utilisés dans la conception de la solution afin d’optimiser l'usage des ressources du réseau. Enfin, les performances de ces contributions sont évaluées à l'aide de modèles analytiques et de simulations afin de valider les approches et solutions proposée

    Open Source Implementation of GeoNetworking based on ITS Station Architecture

    No full text
    National audienceIntelligent Transportation Systems (ITS) are systems deployed to optimize the road traffic and realize safe, efficient and comfortable human mobility. Cooperative ITS is a new vision of ITS where vehicles, the roadside infrastructure, traffic control centers, road users, road authorities, road operators, etc. exchange and share information based on a common communication architecture -- known as the ITS station reference architecture -- supporting all types of ITS use cases over a diversity of access technologies (11p, 11n, 3G/4G, infra-red, ...). The building blocks of the ITS station are specified within ISO, ETSI, IETF and IEEE. To promote the deployment of Cooperative ITS and to encourage further research on it, we introduce an open-source software combining IPv6 and GeoNetworking which are two essential building blocks of the ITS station. It comprises the GeoNetworking protocol, the GN6 adaptation sub-layer (GN6ASL) and the test tools of Basic Transport Protocol (BTP). We implemented each module separately to facilitate the analysis and modification of the protocol behavior and provided a library for inter-process communication between the modules to allow extensibility. Our participation to Cooperative ITS plug tests organized by ETSI demonstrates that our implementation complies to the Cooperative ITS standards while a basic performance evaluation shows that overhead from our implementation design is limited
    corecore